
ERDC MSRC/PET TR/00-29

Enforcing Scalability of Parallel Comprehensive
Mine Simulator (CMS)

by

Wojtek Furmanski
David Bernholdt

Geoffrey Fox

28 June 2000

07h0102000

1

Enforcing Scalability of Parallel Comprehensive Mine Simulator (CMS)

ERDC PET FMS Year 4 Focused Project Technical Report

Wojtek Furmanski, David Bernholdt, Geoffrey Fox (contact person at fox@csit.fsu.edu)
NPAC, Syracuse University

Syracuse, NY, June 2000

Introduction This project addressed the development of scalable Parallel CMS system by
porting to Origin2000 the sequential CMS code developed by Ft. Belvoir. CMS is a substantial
C++ code with a large number of dynamic objects and complex memory layout. Such codes are
inherently hard to parallelize on current shared memory / NUMA platforms such as Origin2000
that are better tuned for conventional, more regular data parallel applications. In consequence,
our initial attempts at Parallel CMS, based on standard Origin2000 semi-automatic parallelization
techniques (such as compiler pragmas or OpenMP) were not very successful. Other FMS projects
reported similar problems – for example the E-ModSAF effort within the CHSSI FMS-3 that
aimed at porting ModSAF to Origin2000 was cancelled due to unmanageable complexity of
dynamic memory layout of numerous simulation objects. To address the challenge of Parallel
CMS we performed an in-depth analysis of the CMS source code, we experimented with a set of
parallization techniques, and finally we succeeded in building a fully scalable Parallel CMS
module. In this report, we summarize our approach and we present our performance, scalability
and load balancing results.

Comprehensive Mine Simulator by Ft. Belvoir The Night Vision Lab at Ft. Belvoir, VA
conducts R&D in the area of countermine engineering, using the advanced Comprehensive Mine
Simulator (CMS) as an experimentation environment for a synthetic battlefield. Developed by the
OSD sponsored Joint Countermine Advanced Concepts Technology Demonstration (JCM
ACTD), CMS is state-of-the-art high fidelity minefield simulator with support for a broad range
of mine categories, including conventional types such as buried pressure-fuzed mines, antitank
mines and other types including offroute (side attack) and wide-area (top attack) mines. CMS
organizes mines in components, given by regular arrays of mines of particular types. Minefields
are represented as heterogeneous collections of such homogenous components. CMS
interoperates via the DIS protocol with ModSAF vehicle simulators. Mine interaction with a
target in controlled by its fuse. CMS supports several fuze types, including full width, track width
fuzes, off-route fuzes and others. CMS mines can also interact with countermine systems,
including both mechanical and explosive countermeasures and detectors.

The relevance of HPC for the CMS system stems from the fact that modern warfare can require a
million or more of mines to be present on the battlefield, such as in the Korean Demilitarized
Zone or the Gulf War. The simulation of such battlefield areas requires HPC support. As part of
the PET FMS project, Syracuse University analyzed the CMS code and ported the system to the
Origin2000 shared memory parallel MPP. Below, we summarize our approach and results.

Parallel CMS: Approach In our first attempt to port CMS to Origin2000, we identified
performance critical parts of the inner loop, related to the repetitive tracking operation over all
mines with respect to the vehicle positions and we tried to parallelize it using the Origin2000
compiler pragmas (i.e. loop partition and/or data decomposition directives). Unfortunately, this
approach delivered only very limited scalability for up to 4 processors. We concluded that the
pragmas based techniques, while efficient for regular Fortran programs, are not very practical for

2

parallelizing complex and dynamic object-oriented event driven FMS simulation codes -
especially the 'legacy' object-oriented codes such as CMS which were developed by multiple
programming teams over a long period of time and resulted in complex dynamic memory layouts
of numerous objects that are now extremely difficult to decipher and properly distribute.

In the follow-on effort, we decided to explore an alternative approach based on a more direct,
lower level parallelization technique. Based on our analysis of the SPEEDES simulation kernel
that is known to deliver scalable object-oriented HPC FMS codes on Origin2000 (such as Parallel
Navy Simulation System under development by Metron), we constructed a similar parallel
support for CMS. The base concept of this 'micro SPEEDES kernel' approach, borrowed from the
SPEEDES engine design but prototyped by us independently of the SPEEDES code, is to use
only the fully portable UNIX constructs such as fork and shmem for the inter-process and inter-
processor communication. This guarantees that the code is manifestly portable across all UNIX
platforms, and hence it can be more easily developed, debugged and tested in the single-
processor multi-threaded mode on sequential UNIX boxes.

In our micro-kernel, the parent process allocates a shared memory segment using shmget() and
then it forks n children, remaps them via execpv(), and passes the shared memory segment
descriptor to each child via the command line argument. Each child attaches to its dedicated slice
of the shared memory using shmat(), thereby establishing the highest possible performance (no
MPI overhead), fully portable (from O2 to O2K) multi-processor communication framework. We
also developed a simple set of semaphores to synchronize node programs and to avoid race
conditions in critical sections of the code. On a single processor UNIX platform, our kernel, when
invoked with n processes, generates in fact n concurrent threads, communicating via UNIX
shared memory. In an unscheduled Origin2000 run, the number of threads per processor and the
number of processors used are undetermined (i.e. under control of the OS). However, when
executed under control of a parallel scheduler such as MISER, each child process forked by our
parent is assigned to a different processor, which allows us to regain control over the process
placement and to realize a natural scalable implementation of parallel CMS.

Parallel CMS: Architecture On top of this micro-kernel infrastructure, we put suitable object-
oriented wrappers that hide the explicit shmem based communication under the suitable higher
level abstractions so that each node program behaves in fact as a sequential CMS, operating on a
suitable subset of the full minefield. CMS module cooperates with ModSAF vehicle simulator
running on another machine on the network. CMS continuously reads vehicle motion PDUs or
the equivalent HLA interaction events from the network, updates vehicle positions and tracks all
mines in the minefield in search for possible explosions. In our parallel version, the parent node 0
reads from the physical network and it broadcasts all PDUs via shared memory to children. Each
child reads its PDUs from a virtual network which is a TCP/IP wrapper over the shmem
communication channel.

Minefield segments are assigned to individual node programs using the scattered/cyclic
decomposition which guarantees reasonable dynamic load balancing regardless of the current
number and configuration of vehicles propagating through the minefield. We found the CMS
minefield parser and the whole minefield I/O sector as difficult to decipher and modify to support
scattered decomposition. We bypassed this problem by constructing our own Java based
minefield parser using the new powerful public domain Java parser technology called ANTLR
and offered by the MageLang Institute. Our parser reads the large sequential minefield file and
chops it into n files, each representing a reduced node minefield generated via scattered
decomposition. All these files are fetched concurrently by the node programs when the parallel
CMS starts and the subsequent simulation decomposes naturally into node CMS programs,

3

operating on scattered sectors of the minefield and communicating via the shmem micro-kernel
channel described above.

Parallel CMS: Performance We performed timing runs of Parallel CMS, using the Origin2000
systems at the Navy Research Laboratory in Washington, DC and at the ERDC Major Shared
Resource Center at Vicksburg, MS. The performance results are presented in Figs. 1 and 2 and
they illustrate that we have successfully constructed a fully scalable Parallel CMS for the
Origin2000 platform. Figs. 1 and 2 present timing results of Parallel CMS for a large minefield of
one million mines, simulated on 16, 32 and 64 nodes. The timing histogram in Fig. 1 displays
total simulation times in a run on a 16-node spent by each of the nodes and it illustrates that we
got almost perfect load balance. Higher bars on this figure represent full simulation run with all
ModSAF PDUs activated, whereas lower bars represent dry CMS run without vehicle updates.
The comparison of both sets illustrates that communication with ModSAF vehicles took of order
of 20-25% of the total simulation time and that both computation and communication parts are
fully load balanced.

Fig. 2 illustrates the speedup measured on 16, 32 and 64 nodes. Instead of T(1)/T(n) we present
un-normalized 1/T(n) in this plot since we couldn't measure T(1) - when trying to run million
mines simulation in one node we got memory overflow error. The SPEEDUP plot illustrates that
Parallel CMS offers almost perfect (linear) scaling over broad range of processors.

Load Balance on16-node Origin2000

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PDUs
No PDUs

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0 16 32 48 64

SPEEDUP

1/T(N)

The timing results described above were obtained during Parallel CMS runs within our WebHLA
[1][2] based HPDC / metacomputing environment that span four geographically distributed
laboratories - ERDC in Vicksburg, MS, NRL in Washington, DC, ARL in Aberdeen, MD and
NPAC in Syracuse, NY. We describe our WebHLA environment and the Metacomputing CMS
runs in another Year 4 technical report [4] (see also the CRPC book chapter [3]).

Summary In this project, we demonstrated that the current generation of shared memory
architectures such as Origin2000 can be successfully used not only for regular data parallel
simulations but also for irregular, more dynamic and object-oriented modeling and simulation
codes. Porting such codes cannot be accomplished by semi-automatic parallelization tools – it

Fig. 1: Simulation time spent by various nodes in a
Parallel CMS run for million mines on a 16-node
subset of Origin2000 at NRL (both for full run with
vehicle PDUs and for a dry CMS-only run without
PDUs) - illustrates very good load balance.

Fig. 2: Speedup of Parallel CMS on NRL Origin2000 for
million mines and 30 vehicles, measured on 16, 32 and 64
nodes - illustrates almost perfect scalability across a broad
processor range.

4

requires more labor and more insight into the object memory layout of the sequential code.
However, it appears that building scalable high performance codes for modeling and simulation is
feasible and that the additional parallel code can be cleanly encapsulated from the legacy
sequential code in the form of a suitable micro-kernel as described in this report. Scalable HPC
M&S codes such as Parallel CMS and our micro-kernel based parallelization techniques
described here, when combined with plug-and-play HLA based integration architecture (such as
addressed in our other Year 4 project on WebHLA [4]) , can play an important role in facilitating
HPC technology insertions into the new generation large scale M&S programs such as JSIMS,
JMASS or JWARS.

References

1. Geoffrey C. Fox, Ph. D., Wojtek Furmanski, Ph. D., Ganesh Krishnamurthy, Hasan T.

Ozdemir, Zeynep Odcikin-Ozdemir, Tom A. Pulikal, Krishnan Rangarajan, Ankur Sood,
“Using WebHLA to Integrate HPC FMS Modules with Web/Commodity based Distributed
Object Technologies of CORBA, Java, COM and XML,” In Proceedings of the Advanced
Simulation Technologies Conference ASTC 99, San Diego, April 99.

2. G. Fox, W. Furmanski, G. Krishnamurthy, H. Ozdemir, Z. Ozdemir, T.Pulikal, K. Rangarajan

and A. Sood, “WebHLA as Integration Platform for FMS and other Metacomputing
Application Domains,” In Proceedings of the DoD HPC Users Group Conference, Monterey,
CA, June 8-15, 1999.

3. CRPC Book Chapter, Morgan-Kaufmann (in progress): WebHLA based Metacomputing
Environment for Forces Modeling and Simulation.

4. Wojtek Furmanski, David Bernholdt, Geoffrey Fox, “HLA Integration for HPC Applications

Applied to CMS”, ERDC MSRC PET Technical Report No. TR00-30, Vicksburg, MS, June
2000.

